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Abstract

The effect of hygrothermal conditions on the buckling and postbuckling of shear deformable laminated cylindrical
shells subjected to combined loading of axial compression and external pressure is investigated using a micro-to-macro-
mechanical analytical model. The material properties of the composite are affected by the variation of temperature and
moisture, and are based on a micro-mechanical model of a laminate. The governing equations are based on Reddy’s
higher order shear deformation shell theory with von Karman-Donnell-type of kinematic nonlinearity and including
hygrothermal effects. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both
taken into account. A boundary layer theory of shell buckling is extended to the case of shear deformable laminated
cylindrical shells under hygrothermal environments and a singular perturbation technique is employed to determine the
interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling
behaviour of perfect and imperfect, moderately thick, cross-ply laminated cylindrical shells under different sets of
environmental conditions. The results show that the hygrothermal environment has a significant effect on the interactive
buckling load as well as postbuckling response of the shell. In contrast, it has a small effect on the imperfection sen-
sitivity of the shell with a very small geometric imperfection. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Hygrothermal effect; Postbuckling; Moderately thick laminated cylindrical shell; Boundary layer theory of shell buckling;
Singular perturbation technique

1. Introduction

In recent years, fibre-reinforced composite laminated shell structures have been widely used in the
aerospace, marine, automobile and other engineering industries. During the operational life, the variation
of temperature and moisture reduces the elastic moduli and degrades the strength of the laminated material.
As a result, a careful evaluation of the effects of environmental exposure is required to find the nature and
extent of their deleterious effects upon performance.

Many postbuckling studies, based on classical shell theory, of composite laminated thin cylindrical shells
subjected to mechanical or thermal loading or their combinations are available in the literature, see, for
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example Birman and Bert (1993), and Shen (1997a,b,c, 1998, 1999). Relatively few studies involving the
application of shear deformation shell theory to postbuckling analysis can be found in Iu and Chia (1988),
Reddy and Savoia (1992), Eslami et al. (1998) and Eslami and Shariyat (1999). In these studies the material
properties are considered to be independent of temperature. However, studies of temperature and moisture
effects on the buckling loads of laminated flat and cylindrical panels are limited in number (see, e.g.,
Whitney and Ashton, 1971; Flaggs and Vinson, 1978; Snead and Palazotto, 1983; Lee and Yen, 1989; Ram
and Sinha, 1992; Chao and Shyu, 1996), and all these studies assumed perfectly initial configurations. In
fact, many shells are subjected to high load levels that may result in nonlinear load-deflection relationships,
even if the shell has a moderate thickness. These shells may also have unavoidable initial imperfections.
Shen (2000) gave a full nonlinear postbuckling analysis of composite laminated cylindrical shells subjected
to combined loading of axial compression and external pressure under hygrothermal conditions. It should
be noted that in the above study the shell is considered as being relatively thin and therefore the transverse
shear deformation is usually not accounted for. The present study extends the previous work to the case of
moderately thick laminated cylindrical shells under combined loads and under hygrothermal conditions.

In the present study, both ambient temperature and moisture are assumed to have a uniform distri-
bution. The shell is fully saturated such that the variation of temperature and moisture are independent of
time and position. The material properties are assumed to be functions of temperature and moisture. The
thermal expansion and swelling coefficients are based on a micro-mechanical model of a laminate (Tsai and
Hahn, 1980). In terms of a macro-mechanical model, the governing equations are based on Reddy’s higher
order shear deformation shell theory with von Kdarman-Donnell-type of kinematic nonlinearity and
including hygrothermal effects. A boundary layer theory of shell buckling, suggested by Shen and Chen
(1988, 1990), is extended to the case of shear deformable laminated cylindrical shells under hygrothermal
environments and a singular perturbation technique is employed to determine the interactive buckling loads
and postbuckling equilibrium paths. The nonlinear prebuckling deformations and initial geometric im-
perfections of the shell are both taken into account but, for simplicity, the form of initial geometric im-
perfection is assumed to be the same as the initial buckling mode of the shell.

2. Theoretical development

Consider a cylindrical shell with mean radius R, length L and thickness ¢, which consists of N plies,
exposed to moisture and elevated temperature, and is subjected to two mechanical loads, an axial load P,
and a uniform external pressure ¢. The shell is referred to a coordinate system (X, Y, Z), in which X and Y
are in the axial and circumferential directions of the shell and Z is in the direction of the inward normal to
the middle surface, the corresponding displacement designated by U, ¥ and W. ¥, and P, are the rotations
of normals to the middle surface with respect to the Y- and X-axes, respectively. The origin of the coor-
dinate system is located at the end of the shell on the middle plane. The shell is assumed to be relatively
thick, geometrically imperfect. Denoting the initial geometric imperfection by W*(X,Y), let W (X, Y) be the
additional deflection and F(X,Y) be the stress function for the stress resultants defined by N, = F s
N, =F,, and N,, = —F,,,, where a comma denotes partial differentiation with respect to the corresponding
coordinates.

Reddy and Liu (1985) developed a simple higher order shear deformation shell theory, in which the
transverse shear strains are assumed to be parabolically distributed across the shell thickness and which
contains the same dependent unknowns as in the first order shear deformation theory. Based on Reddy’s
higher order shear deformation theory with von Karman—Donnell-type kinematic relations and including
hygrothermal effects, governing differential equations are derived and can be expressed in terms of a stress
function F, two rotations ¥, and ¥,, and transverse displacement ¥, along with initial geometric im-
perfection W*. For moderately thick cross-ply laminated cylindrical shells, they are
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Ly (W) + Laa(P2) = Laa(P,) + Laa(F) = Lss(N") = Lsg(S™) = 0 3)
Lay(W) = Liy(V,) + Lz (V) + Laa(F) — Las(N") — Lag(S™) = 0 4)

where linear operators I:,;,- ( ) and nonlinear operator L ( ) are defined in Appendix A.
The two end edges of the shell are assumed to be simply supported or clamped, so that the boundary
conditions are X =0, L:

W=1¥, =0, M, = P, = 0 (simply supported) (5a)

W=% =%,=0 (clamped) (5b)
2nR B

N.dY + 2nRto, + tR?qa = 0 (5¢)

0

where a = 0 and a = 1 for lateral and hydrostatic pressure loading case, respectively, and o, is the average
axial compressive stress, M, is the bending moment and P, is higher order moment as defined in Reddy and
Liu (1985). Also, we have the closed (or periodicity) condition

2nR aV
—dY =
/0 A7 =0 (6a)

or

wR R O°F .4\ ow, .4 \ow, 4 (  @w W
/0 A226X2+A12@y2 (321 3t2E21>a_X+(Bzz_ﬁEzz>a—Yy—ﬁ E21W+E22W

_ _ 2 _ _
w1 (oW ow ow* « oH v oH .
+E§<a_y> ~or ov (¥, +A22Ny)}dyo (©b)

Because of Egs. (6a) and (6b) the in-plane boundary condition ¥ = 0 (at X = 0, L) is not needed in Egs.
(5a) and (5b).
The average end-shortening relationship is

2R
o Y
3 2nRL/ A dXd
2nR F 62F L4 asv .4 \oY,
- 2nRL Ahgprtegat (B —3a8n ) o T\ B =328 ) 5y

2
4 ( . oW ew\ 1(ow\ owow _ i
_4 (E oW _W> _! <_> _owow _ (A”I“INXH +A’1‘2N}I,{>}dXdY (7)

32\ 1 ox? 123y2 2\ ox X oX

The equivalent hygrothermal loads are defined as
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MH — MT + Mm (8)
SvH SwT Swm

The forces, moments and higher order moments caused by elevated temperature or absorbed moisture are
defined by

NGoMmDoBRT A,
_ _ = k
NTOMT P :Z/ (1,2,72%)| 4, | ATdz (92)
N7 Y D k=1 k-1
Ny M, P Aw ]
EdEA P
- _ 4
T T T
S| = | -5 |2 (90)
T va DT
Sry Mxy P)CV
and
-Nm Mm Pm
7)5 7)6 7)( N t/( X
N M B =Z/ (1,2,2)| B, | ACdZ (%)
! /m  pm k=1 k-
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Qom | m 4 pm
AR ARl 00
so| | (e

where AT is temperature rise from some reference temperature at which there are no thermal strains and AC
is the increase from zero moisture measured in terms of the percentage weight increase, and

_ Ax_ -Qll le QIG 17 Cj Si 1 o
Af ==10n On Ox||s ¢ L‘zz] (10a)
| A ] | 016 O Oss] [ 205 —2cs ]
[ B.] _Qll le Qm_ [ s> ] B
R | [ﬁ] (10b)
-Bxy i 1 Q16 Oz O _ZCS —2cs ]
where Q,-j are the transformed elastic constants, defined by
[0 ] [ ¢ 2c%5 st 4c%s?
O st A4t A8 —4c%s? On
On| _ | ¢ 27 ct 4c%s? On (11a)
O | | s e®—=0s —es® —2es(?—5%) | | On
Q26 cs® As—cs® —cs 2es(c? — %) Ocs
[ Ogs | 252 20287 PSP (2 —s%)?
— Q44 - r Cz S2 Q
Oi | =|—cs cs [ 44} (11b)
Oss 2 2 Oss




H.-S. Shen | International Journal of Solids and Structures 38 (2001) 6357-6380 6361

where
_ En . En _ vaEy
Qu = (1 =viavar)’ On = (1 —vivy) . (1 =vipva)
Ou =Gy, QOss =013, Qe = G2 (11c)
and
c=cosf, s=sinb (11d)

where 0 is the lamination angle with respect to the shell X-axis.

In terms of a micro-mechanical model of the laminate, the thermal expansion coefficients in the longi-
tudinal and transverse directions may be written as (see Tsai and Hahn, 1980)
_ I/}Ef(xf + VmEmOCm

— 12
T T E t VB (122)

o2 = (14 ve) Vo + (1 4 ) Vit — V12011 (12b)

where o and o, are thermal expansion coefficients of the fibre and matrix respectively and the longitudinal
and transverse coefficients of hygroscopic expansion of a lamina may be written as
_ VfEfcfmﬁf + VmEmﬁm

P = Ei(Vipecim + Vi)

(13a)

Ve(1 + ve)emmPp + V(1 + Vi) B
V;‘prfm + Vmpm

Br = p— 2Py (13b)

where cp, 1s the moisture concentration ratio, ff; and f,, are the swelling coefficients of the fibre and matrix,
and p, p; and p,, are mass densities of a lamina, fibre and matrix respectively and are related by

p = prf + Vmpm (14)
In the above equations, J; and V;, are the fibre and matrix volume fractions and are related by
Vit Vy=1 (15)

and E, Gy and vy are the Young’s modulus, shear modulus and Poisson’s ratio respectively of the fibre, and
E., Gy, and v, are corresponding properties for the matrix.

Fr (16a)
! h Vm 2Em Ey 2f? Em -2 m
—:_f+__Vfvaf / f+vm f/ VeV (16b)
En  Ei En ViEr + ViEnm
1 7
Gn G Gy 16
G Gy * Gnm (16c)
viz = Vve + VaVm (16)

It is assumed that £, is a function of temperature and moisture, as shown in Section 4, so that oy, o,
Biis Pas Erls Ex, Gra, Giz(= Gpp) and Gy (= 0.5 G),) are also functions of temperature and moisture.
Furthermore, in Egs. (6b) and (7), and Eq. (19) below, the reduced stiffness matrices [4]], [B}], [D}], [E;],
[F;] and [H}] (i,j = 1,2,6) are functions of temperature and moisture, defined by
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A"=A", BB=-A"'B, DD=D-BA'B, EE=—-A"'E, FF=F-EA'B,
H =H-EA'E

where 4;;, Bj; etc., are the laminate stiffnesses, defined by

(A, By, Dy By By Hy) Z/ (L2222, 242942 (i,j = 1,2,6)

A:ijzij Z / 1 z Z4)dZ (i,j=4,5)

3. Analytical method and asymptotic solutions

(18a)

(18b)

Having developed the theory, we now try to solve Egs. (1)-(4) with boundary conditions (5a)—(5c¢).
Before proceeding, it is convenient first to define the following dimensionless quantities (with y;; in Egs.

(25), (27) and (28) below are defined as in Appendix B)
x=nX/L, y=Y/R, B=L/nR, Z=1/Rt, &= (1°R/L*)|D; Did; As]"",
(W, W) = e(W, ")/ [D}, Dy A] ', F = &F/[D} D3],
(Vo ¥)) = (0, 9,)(L/7)/ (D} D A3p]
Y14 = [DSZ/D’II]W, You = [AL/ASZ]”Z, s = —Ap /A3,
(731, 7a1) = (L*/7?)(Ass — 8Dss /> + 16Fss /t*, Ay — 8Dyy/t* + 16Fy,/t*)/D;,
(V71,772 Vs Vm2) = (A;ryA}TaB?aBm)R/ [D’{IDZZ/ALAZJW,
(M, P) = (M., 4P, /30)17 /7D, [D} Dy A3]
Iy = 0./ (/RN [D}\ D/ A AR] ", 6, = (A/L)/(2/R) D}, Dyt 3],

3/8

7q = q(3) LR (45,43 4nID} Dy, 6, = (4:/1)(3) LR J4n D} DA A3

and let

AT Bm} = /’k [A B}
ol =- ot dz
T m

[Ay BJ’ ; fk—1 Ay By k

The nonlinear Egs. (1)-(4) may then be written in dimensionless form as

82LII(W) — el (V) — eLis(Vy) + eppalia(F) — 71aF e = 714ﬁ2L(W + W F) + V14%(3)1/4)vq83/2

Lo (F) + 92aLon (W) + 72alos(Wy) — e9aaloa(W) + youW e = —%?24/32L(W +2W, W)
eLat(W) + Ln(Vy) — Las(V)) + 71alaa(F) = 0

eLat(W) — Lao(¥x) + Las (W) + 714Laa(F) =0
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where
ot 5 o4 . 4
L —y = 19 - 4, >
() /1loax4+ TP oy 5+ 71148 o
o? o?
Lip( )= T120 33 3+V122ﬁ 0y
63 5 3
Lis( )= Vmﬁ%‘f‘“/mﬁ 6_y3
o L, o | o
Li( ) = V14o@+2%42/3 207 5+ V1B ot
o* o* ot
Lo( )= 6x4+ 29,08’ oy 2+V214ﬁ4
o , o
Ln( )= szo@‘f'yzzzﬁ oy
o o?
Ly( )= Vzalﬁa 23y /zssﬁSa—f
o4 o | o
L
u( )= V053 + 29208 207 + 7204 o (25)
0 o o
Ly( )= 7315, +V3106 3‘|‘V3125 o7
02 @2
L( ) =73 — Vazoa 2 /322ﬁ2
62

Ly( ) = Vmﬂw

La( ) = Lao( )
o? 63
Ly( )= V41ﬁ + /411ﬁa 2%y ‘|‘)’413,83
Lip( ) = Las( )
o? 62
Lis( ) =74 — Va023 2 V432ﬁ2
Ox
Lu( ) =Las( )
o* o o* o*
L()=——-2 +—= =
Ox? 0y? OxOy Ox0y  0Oy? Ox?

Because of the definition of & given in Eq. (19), for most of the composite materials [Dj,D3,47,43,] V4 =
(0.2 —0.3)z, hence when Z = (L*/Rt) > 2.96, we have ¢ < 1. Specially, for isotropic cylindrical shells, we
have & = 12/ Z5+/12, where Zy = (L*/Rt)[1 —v3]'/* is the Batdorf shell parameter, which should be greater
than 2.85 in the case of classical linear buckling analysis (Batdorf, 1947). In practice, the shell structure will
have Z > 10, so that we always have ¢ < 1. When ¢ < 1, then Egs. (21)~(24) are the equations of the
boundary layer type, from which nonlinear prebuckling deformations, large deflections in the postbuckling

range and initial geometric imperfections of the shell can be considered simultaneously. The boundary
conditions of Egs. (5a)-(5¢) become x = 0, 7:

W=%,=0, M,=P =0 (simply supported) (26a)
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W=¥,=%, =0 (clamped) (26b)
1 , O°F 2 14
I /3 dy + 27,6+ = 3 (3)"*2,e*a =0 (26¢)

and the closed condition becomes

/275
0

o*F o°F oY, oY, oF*w
(6—x2_ B 3 2) +V24(/220 o + /522ﬁ ) )24 (V240 o +V622ﬂ ) + vl

1 ow ow ow
V24/3 ( o ) - /24ﬂ2 W +e(yr2 = 75711 AT + &(Pma — V5Vm1)AC| dy =0 (27)

In this section two loading conditions will be considered, so that the unit end-shortening relationship
may be written in two dimensionless forms as

3)* 2 LOF F oY, 0w,
g
q 8n2y24 1ab B3 Vs ae + Voa| Vsuu = o +V233ﬁ

oew AN AL oW ow*
BRI I T ‘Vmaa
+e(72r1 = V57r2)AT + €03Vt — V57m2)AC | dxdy (28a)

[T o*F R o,
Op = 47127)24 1/ / [( 2452 SR ey ) t 724 (7511 o " /2335 >
*w 262 1 (oW oW ow*
s G+t 5 ) - () e

+ (3471 — ¥572) AT + €(¥347m1 — VsVm) AC | dxdy (28b)

By virtue of the fact that AC and AT are assumed to be uniform, the hygrothermal coupling in Egs. (1)-
(4) vanishes, but terms in AC and AT intervene in Egs. (27), (28a) and (28b).

Applying Egs. (21)-(28b), the postbuckling behaviour of perfect and imperfect, shear deformable
laminated cylindrical shells subjected to combined mechanical loading under hygrothermal environments is
determined by a singular perturbation technique. The essence of this procedure, in the present case, is to
assume that

W =wlx,y.e) + W(x, & y,e) + W(x.c.p)
F=f(x,y,8)+ (éy,) (x,¢,¥,8)

U3, 0) + Pl ) + (5 0,0) )
=, (x,3,8) + Pu(x, &y, 8) + Py (x, ¢, 3, €)

where ¢ is a small perturbation parameter (see beneath Eq. (25)) and w(x, y, ¢), f(x,y,¢) are called outer
solutions or regular solutions of the shell, W(x,& y,e), F(x,&y,e), P.(x,&v,e), Py(x,&p,e) and
W(x,c,y,€), F(x,c,v,¢), li’x(x, GV, E), ‘f’y(x, ¢,»,¢) are the boundary layer solutions near thex =0 andx ==
edges, respectively, and ¢ and ( are the boundary layer variables, defined as

~§ﬁ
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E=x/Ve, c=(n-x)/Ve (30)

(This means for isotropic cylindrical shells the width of the boundary layers is of the orderv/Rz.) In Eq. (29)
the regular and boundary layer solutions are taken in the form of perturbation expansions as

)C 'V € Z‘(’J/ W//Z X y f(x7y7 8) = Zgj/zf‘l/Z(xay)

Jj=0

(31a)
Vo (x,y,8) = Zy/ )0 (62), ¥, (x, 0,8 Za 2)(x,9)
j=1
é Y, & Z{'J/ o W/2+1 ‘fvy)7 ﬁ(xa iayﬂg) = Zsj/2+zﬁ}/2+2(x7é7y)
(31b)
é )’7 Z 8(/+3 /2 (]_H /2( 5 y) é ya Z 8//2+2 1/2+2( I fvy)
Wixcpe) = P Wpa(xey), Fleye) =Y ¢>2F,,(xcy)
I e (31c)
lllx(xag,yﬂ 8) = Z8U+3)/2('Px)(j+3)/2(xagay)a ;57y7 ZSI/Z+2 //2+2( 1$,y)
=0
The initial buckling mode is assumed to have the form
wa(x,y) = A(lzl) sin mx sin ny (32)

It should be remembered that, because of the definition of W given in Eq. (19), this means that w,(x,y)
corresponds to w; (X, Y) and the initial geometric imperfection is assumed to have a similar form

W*(x,y,¢) = &’aj, sin mx sin ny = ez,uAﬁ) sin mx sin ny (33)

where i = aj, /A7) is the imperfection parameter.

Substituting Egs. (29)-(31c) into Egs. (21)—(24), collecting the terms of the same order of ¢, three sets of
perturbation equations are obtained for the regular and boundary layer solutions, respectively. It has been
shown (Shen and Chen, 1988, 1990) that the effect of the boundary layer on the buckling load of the shell
under axial compression is quite different from that of the shell subjected to external pressure. To this end,
two kinds of loading conditions will be considered.

Case (1) high values of external pressure combined with relatively low axial load. Let
P
0 _p, (34a)
nR%q

or
22,€
e (346)
$(3) 7" 24832 2
In this case, the boundary condition of Eq. (26c) becomes

1 , 0°F 2
pre p 5 0T334 @t b) =0 (35)

For convenience we replace (a + b;) with a; in Eq. (37) below, by using Egs. (32) and (33) to solve these
perturbation equations of each order, and matching the regular solutions with the boundary layer solutions
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at the each end of the shell, so that the asymptotic solutions satisfying the clamped boundary conditions are
constructed as

W =g’ {Aéﬁm —AG? (a(fl/z) cos¢7+ all? sinq&\;g) exp (— a\;g)

3/2)( (3/2) (3/2) .. T—X T—X
—Ago/ (%1/ cosqb \/_ +al/ sm(ﬁw>exp<—a7)] +é {A ])smmxsmny}
+e [A“) sin mx sin ny] + & {AOO + 45 cos 2mx + A cos 2ny] +0(&) (36)

Pt (e ral) vl - e (e H;)} [Boo(ﬁw )

(2) g ; 5/2| 4312 [ p5/2) b2 *
+ By sin mx sin ny} +& {AOO (b cos <,b sing— Jexp| — oc
\/— Ve

+Aw2 (bS/Z COS¢7+b5/2 smd)n—\;;> exp (—ocn—\;;)} +83|:——BOO (ﬁx +a1)§>}

e
+e4[——B00 (/3 ¥ +a 3) + BV sin mx sin ny + BY cos 2mx + B} cos2ny} +0(&%) (37)

™

P, =g [C}f cos mx sinny + (cm (:osd)\/_—kc10 sm(j)\/_> exp <— oc\)/cg>
) T —X () .: m—X T — 3)
+ | ¢y cCOSp——=—+¢ smqb—) exp(—a—)} +e {C cosmxsmny}
( 01 \/’ 10 \/E \/(;’ 11
+ ¢ [Cll) cos mxsin ny + Cly) sm2mx] +0(&’) (38)

Y, = [Dﬁ) sin mx cos ny} +¢ {Dﬁ) sin mx cos ny} + ¢ {Dﬁ) sin mx cos ny + Dy sin 2ny] +0(%)  (39)

Note that all coefficients in Egs. (36)—(39) are related and can be written as functions of Aﬁ?, but for the
sake of brevity the detailed expressions are not shown, whereas « and ¢ are given in detail in Appendix C.

Next, substituting Egs. (36)—-(39) into the boundary condition (35) and into Eq. (28a), the postbuckling
equilibrium paths can be written as

Dy =20 + 224 + - (40)
and
3y =0 — o 4 5D (4 e?) + - (41)

in Egs. (40) and (41), (A11 ¢ ?) is taken as the second perturbation parameter relating to the dimensionless
maximum deflection. If the maximum deflection is assumed to be at the point (x,y) = (n/2m, n/2n), then

AV =Wy — oW + - (42a)
and the dimensionless maximum deflection of the shell is written as

1 t w
N TSR +6; (42b)
3| (D} D347,45)] t

All symbols used in Egs. (40)-(42b) and Eqgs. (49)-(51b) below are also described in detail in Appendix C.

Wan =
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Case (2) high values of axial compression combined with relatively low external pressure. Let

or

= 4
7 b, (43a)
4(3)4) ¢
3 @ _
e = 2b, (43b)
In this case, the boundary condition of Eq. (26¢) becomes
1 ’F
7 /3 20 dy +27,6(1 +aby) =0 (44)

Slrmlarly, by takmg ay = 2b,/(1 4+ aby) and using a singular perturbation procedure, the asymptotic

solutions satisfying the clamped boundary conditions are obtained as

— X

1 1 X 1 1 T
W= 8[14(()0) — A (afn) cosd)\/_ +aly sing \/_) exp ( - a%) — 4l (aél) cos ¢ 7

y . ,T—X x 2
+a§0) sm¢7> exp (— o 7 >] + ¢ [AH) smmxsmny—&—A02 cos2ny — (A(()z> cosZny)

1 X 1 . X X 2
X (a(()l) cos ¢ 7 + a(w) sin ¢ 7) exp < - a%> - (A(()z) cos Zny)
x T—
X (a(()l) cosc]S 7 “ia 10 sin (’b\/E) exp ( —o 7 )} +¢ [A“> sin mx sin ny +A02 cosZny}
+ ¢ [Agé) + AS) cos 2mx + A cos 2ny + 4% sin mx sin 3ny + AL cos 4ny} +0(&) (45)

1 1 1
F= =3B (@px + ) +e [ — 5 Bul(@p’ +y2)} e [ — 5B (@f* + )

+ Bﬁ) sin mx sinny + A(()l)) (bézl) cos ¢ \/i_ + b(ﬁ)) sin ¢ %) exp ( - a%)

- 1
+4) (bm cosq{) \/ an b smq’; \/‘ ) exp ( — an\/;ﬂ + & [ — EBE)?(azﬁzxz +37)
X 2)
+302 cos2ny + ( 0 ) cos 2ny) <b01 cosqb + b 1o s1n¢ exp| —a— ) + (A(()2 cos 2ny)
Ve Ve Ve
_ . — — 1
X (bg) cos¢n—\/§x+ b%) smgbn—\/;) exp < - ocn—\/;)] + &t [ - EB(()?(azﬁzxz +7)

+ B\ sin mx sin ny + BS) cos 2mx + By cos 2ny + B\ sin mx sin 3ny} +0(¢) (46)

?’x:e3/2[AéOc(l30/2 smqﬁ%exp( \/.> + AN sin ¢~ \/. exp( ocn—\;.gxﬂ

. . X
+ &2[CY cos mx sin ny] + &/ {(A((fz) cos 2ny)c\Y/? sin ¢ 7_exp ( - oc\/_) + (45 cos 2ny)c3?
e e

NG

+ C\Y cos mx sin 3ny] + O(&) (47)

4)

x sin ¢ exp( a%)] + &[CY cos mxsin ny] + *[C\7 cos mx sinny + Cly) sin 2mx
€
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Y, = (DY) sin mx cos ny] + &’ {Dﬁ) sin mx cos ny + foz) sin 2ny — (Af)zz) 2nf sin 2ny) (déf) cos¢ =

Ve
+d(3)sin¢i) exp(—ai> ( 2nﬁsm2ny)( COS(,IS——i—d squ x>
10 \/E \/E 02 01 \/— 10 \/E
xexp(—an\;_xﬂ + DY s1nmxcosny+D02 s1n2ny—i—D13 sin mx cos 3ny] + O(&’)

3

(48)
Next, substituting Eqs. (45)—(48) into the boundary condition (44) and into Eq. (28b), the postbuckling
equilibrium paths can be written as

, 1
/Lp_l-l-abg

[&(70) ple) (Aﬁ)S)Z + 124) (A§21)8)4 4. (49)
and

8y =0 — 3" + 5P (4e) + oW (AT e)! + - - (50)

P

In Egs. (49) and (50), similarly, (A ¢) is taken as the second perturbation parameter, and we have
AVe = Wy — 002 + (51a)
and the dimensionless maximum deflection of the shell is written as

1 t w
AT (510)
3 | [D11D5,47,45,)]

It is noted that now if]i), 5((1”, i;i) and 5[(f> (i=0,2,4,...) are all functions of temperature and moisture.
Egs. (40)—(42b) and (49)-(51b) are employed to obtain numerical results for the postbuckling load-
shortening or load-deflection curves of moderately thick laminated cylindrical shells subjected to combined
loading of axial compression and external pressure under environmental conditions. Buckling under ex-
ternal pressure alone and buckling under axial compression alone follow as two limiting cases. By in-
creasing b; and b,, respectively, the interaction curve of a laminated cylindrical shell under combined
loading can be constructed with these two lines. Note that since b, = 1/b;, only one load-proportional
parameter should be determined in advance. The initial buckling load of a perfect shell can readily be
obtained numerically, by setting W*/t = 0 (or u = 0), while taking ¥/t = 0 (note that W, # 0). In this case,
the minimum buckling load is determined by considering Eq. (40) or Eq. (49) for various values of the
buckling mode (m, n), which determine the number of half-waves in the X-direction and of full waves in the
Y-direction. Note that because of Eqgs. (36) and (45), the prebuckling deformation of the shell is nonlinear.

4. Numerical results and comments

The efficiency and accuracy of the present method for the buckling and postbuckling analysis of com-
posite laminated cylindrical shells, excluding moisture and temperature effects, were examined by many
comparison studies given in Shen (1997a,b,c, 1998). To study the effects of temperature and moisture on the
postbuckling behaviour of shear deformable laminated cylindrical shells, several numerical examples were
solved for perfect and imperfect, moderately thick, cross-ply laminated cylindrical shells. Graphite/epoxy
composite material was selected for the shells in the present examples. However, the analysis is equally
applicable to other types of composite material. For these examples R/t = 30 and Z = 375, all plies are of
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equal thickness and the material properties adopted are (Adams and Miller, 1977; Bowles and Tompkins,
1989): E; = 230.0 GPa, Gy = 9.0 GPa, vy = 0.203, oy = —0.54 x 107/°C, p; = 1750 kg/m>, cpn = 0, vy, =
0.34, oy, =45.0 x 10°%/°C, p,, = 1200 kg/m?, B, =2.68 x 1073/wt.% H,O and E, = (3.51 — 0.0037—
0.142C) GPa, in which T = T; + AT and T, = 25°C (room temperature), and C = Cy + AC and Cy =0
wt.% H,0. The numerical results are presented both in tabular and in dimensionless graphical forms. It
should be noted that in all figures W*/¢t and W/t mean the dimensionless forms of, respectively, the
maximum initial geometric imperfection and additional deflection of the shell.

The buckling loads (0, ger) (N/mm?) for perfect 4-ply (0/90/90/0) (or (0/90)s) symmetric cross-ply and
(0/90/0/90) (or (0/90),1) antisymmetric cross-ply laminated cylindrical shells under four sets of combined
loading conditions, i.e. lateral pressure alone (b, = 0), combined loading case (1) (b; = 10), combined
loading case (2) (b, = 0.02) and axial compression alone (b, = 0), and under three sets of environmental
conditions, referred to as 1, 2 and 3, are calculated and compared in Table 1. For environmental case 1,
T = 25°C, so that both AT and AC are zero. For environmental case 2, AT = 50°C and AC = 0.5%, and for
environmental case 3, AT = 100°C and AC = 1%. Also, three values of the fibre volume fraction V;(= 0.5,
0.6 and 0.7) are considered. It is seen that the buckling loads are reduced with increases in moisture and
temperature and with decreases in fibre volume fraction.

Fig. 1 shows the interaction between A° and 2" for (0/90)s and (0/90),r laminated cylindrical shells under
three environmental conditions, in which )v; = q/qe and i; = 0,/0., Where g, and o, are critical buckling

Table 1
Comparisons of buckling loads (o, ¢.:) (N/mm?) for perfect (0/90)s and (0/90),r laminated cylindrical shells under combined loading
of axial compression and lateral pressure, and under three sets of environmental conditions (R/t = 30 and Z = 375)

Lay-up AT = 0°C, AC = 0% AT = 50°C, AC = 0.5% AT =100°C, AC = 1%

(0/90)s Vi

4

0.5

0.6

(279.585, 0)
(255.708, 0.341)
(118.945, 0.793)
(0, 1.086)

(332.188, 0)
(304.295, 0.406)
(142.437, 0.950)

(272.865, 0)
(249.352, 0.332)
(116.571, 0.777)
(0, 1.066)

(324.593, 0)
(297.055, 0.396)
(139.670, 0.931)

(266.023, 0)
(242.869, 0.324)
(114.145, 0.761)
(0, 1.046)

(316.837, 0)
(289.654, 0.386)
(136.840, 0.912)

(0, 1.303) (0, 1.280) (0, 1.256)
Vi = 0.7 (399.323, 0) (390.719, 0) (381.904, 0)
(367.150, 0.490) (358.893, 0.479) (350.416, 0.467)
(172.019, 1.147) (168.756, 1.125) (165.417, 1.103)
(0, 1.575) (0, 1.547) (0, 1.518)
(0/90),7 Vi = 0.5 (297.251, 0) (290.136, 0) (282.875, 0)

0.6

0.7

(284.665, 0.380)
(200.637, 1.338)
(0, 2.003)

(352.663, 0)
(337.805, 0.450)
(238.934, 1.593)
(0, 2.390)

(422.865, 0)
(404.916, 0.540)
(284.511, 1.897)
(0, 2.838)

(277.965, 0.371)
(197.283, 1.315)
(0, 1.976)

(344.669, 0)
(330.272, 0.440)
(235.118, 1.567)
(0, 2.358)

(413.932, 0)
(396.495, 0.529)
(280.256, 1.868)
(0, 2.803)

(271.124, 0.361)
(193.811, 1.292)
(0, 1.947)

(336.485, 0)
(322.557, 0.430)
(231.162, 1.541)
(0, 2.358)

(404.749, 0)
(387.835, 0.517)
(275.837, 1.839)
(0, 2.766)
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Fig. 1. Hygrothermal effects on the interaction buckling curves for laminated cylindrical shells under combined loading: (a) (0/90)s and
(b) (0/90)o7.

loads for the shell with }; = 0.6 under lateral pressure alone or axial compression alone, and under envi-
ronmental condition AT = 0°C, AC = 0%. The results calculated show that for the (0/90)s shell buckling
occurs due to axial compression alone with a buckling mode (m,n) = (3,4) while due to lateral pressure
alone the buckling mode (m,n) = (1,3). In contrast, for the (0/90),r shell buckling occurs due to axial
compression alone with a buckling mode (m,n) = (4,4) while due to lateral pressure alone the buckling
mode (m,n) = (1,3). Changes in buckling mode are clearly observed by increasing the load-proportional
parameter b, (or b;), i.e. m = 3 (or 4) becomes m = 1. The interaction curve consists of two lines (by in-
creasing b, and by, respectively) and the transition from one to another is smooth, so that they seem to be as
one line. Then Fig. 2 shows the effects of fibre volume fractions on the interaction buckling curves of (0/90)s
and (0/90),t laminated cylindrical shells under environmental condition 3. It is seen that the hygrothermal
environment or fibre volume fraction has a significant effect on the shape of the interaction buckling curves.

Figs. 3 and 4 give, respectively, the postbuckling load-shortening and load—deflection curves for perfect
(W*/t = 0) and imperfect (W*/t = 0.1), (0/90)s and (0/90),r laminated cylindrical shells under combined
loading case (2) with the load-proportional parameter b, = 0.0 (referred to as I) and 0.02 (referred to as II),
and under three sets of environmental conditions, in which i; is defined as in Fig. 1 and 5; = A,/A., where

(0/90),, (b)

Ri=30,Z=375
T=100C, AC=1%

0/90), _ (@)
Rit=30,Z =375 1.0

AT=100°C, AC=1%

0.0 0.2 04 0.6 0.8 1.0 1.2

Fig. 2. The effects of fibre volume fractions on the interaction buckling curves for laminated cylindrical shells under combined loading:
(a) (0/90)s and (b) (0/90)r.
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Fig. 3. Hygrothermal effects on the postbuckling of a (0/90)s laminated cylindrical shell under combined loading: (a) load—shortening
and (b) load—deflection.
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Fig. 4. Hygrothermal effects on the postbuckling of a (0/90), laminated cylindrical shell under combined loading: (a) load—shortening
and (b) load—deflection.

A, is a critical value of end-shortening corresponding to . It can be seen that only a weak ‘“‘snap-
through” phenomenon occurs in the postbuckling range. The elastic limit load can be achieved only for
very small imperfections and in such a case imperfection sensitivity can be predicted. In contrast the
postbuckling path is stable when W*/t = 0.1, and the shell structure becomes imperfection-insensitive. It
can also be seen that the buckling loads are reduced with increases in moisture and temperature, and the
postbuckling path becomes significantly lower as b, increases.

Figs. 5 and 6 show, respectively, the effect of fibre volume fractions V;(=0.5, 0.6 and 0.7) on the
postbuckling load-shortening and load—deflection curves for the same two laminated cylindrical shells
under combined loading case (2) with the load-proportional parameter 5, = 0.0 and 0.02, and under the
environmental condition 3. It can be seen that the buckling loads are reduced with decreases in fibre volume
fraction, and the postbuckling path becomes significantly lower as }; decreases.

The imperfection sensitivity A" is calculated and compared in Tables 2 and 3 for (0/90)s and (0/90),1
laminated cylindrical shells under combined loading case (2) with the load-proportional parameter b, = 0.0
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Fig. 5. The effects of fibre volume fractions on the postbuckling of a (0/90)s laminated cylindrical shell under combined loading: (a)
load-shortening and (b) load-deflection.
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Fig. 6. The effects of fibre volume fractions on the postbuckling of a (0/90),r laminated cylindrical shell under combined loading: (a)
load-shortening and (b) load—deflection.

Table 2
Imperfection sensitivity A* for imperfect (0/90)s laminated cylindrical shells (J; = 0.6, R/t = 30 and Z = 375) under combined loading
case (2) and under three sets of environmental conditions

w*/t AT = 0°C, AC = 0% AT = 50°C, AC = 0.5% AT =100°C, AC = 1%
b, =0 b, =0.02 b, =0 b, =0.02 b, =0 b, =0.02

0 1.0 1.0 1.0 1.0 1.0 1.0
0.002 0.9740 0.9779 0.9471 0.9780 0.9742 0.9780
0.004 0.9594 0.9653 0.9596 0.9653 0.9598 0.9654
0.006 0.9479 0.9548 0.9473 0.9549 0.9485 0.9550
0.008 - 0.9457 - 0.9457 - 0.9459
0.01 - 0.9374 - 0.9375 - 0.9376
0.012 - 0.9297 - 0.9299 - 0.9300
0.014 - 0.9227 - 0.9228 - 0.9230
0.016 - 0.9160 - 0.9162 - 0.9165

0.018 - 0.9099 — 0.9101 - 0.9104
0.02 - 0.9041 - 0.9044 - -
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Table 3
Imperfection sensitivity 4* for imperfect (0/90),r laminated cylindrical shells (V; = 0.6, R/t = 30 and Z = 375) under combined loading
case (2) and under three sets of environmental conditions

W/t AT = 0°C, AC = 0% AT = 50°C, AC = 0.5% AT =100°C, AC = 1%

b, =0 b, =0.02 b, =0 b, =0.02 b, =0 by, =0.02
0 1.0 1.0 1.0 1.0 1.0 1.0
0.002 0.9795 0.9798 0.9798 0.9801 0.9802 0.9805
0.004 0.9679 0.9684 0.9684 0.9689 0.9690 0.9695
0.006 0.9586 0.9590 0.9593 0.9597 0.9601 0.9605
0.008 0.9506 0.9510 0.9515 0.9519 0.9525 0.9528
0.01 0.9437 0.9439 - 0.9449 - 0.9461
0.012 - 0.9376 - - - -

and 0.02, and under three sets of environmental conditions. Here, 1" is the maximum value of o, for the
imperfect shell, made dimensionless by dividing by the critical value of o, for the perfect shell as shown in
Table 1. It can be observed that geometric imperfection has a small effect on the buckling loads. These
results also show that the imperfection sensitivity of the shell becomes slightly weaker as b, and the
moisture and temperature increase. Note that the results presented here are only for very small initial
geometric imperfections, e.g. W*/t<0.01 under loading condition of axial compression (b, = 0), or
W*/t<0.02 under combined loading case (2) (b, = 0.02).

5. Concluding remarks

In order to assess the effects of temperature and moisture on the postbuckling behaviour of shear de-
formable laminated cylindrical shell subjected to combined loading of axial compression and external
pressure, a fully nonlinear postbuckling analysis is developed based on a micro-macro-mechanical model.
The material properties are considered to be dependent on temperature and moisture, which are given
explicitly in terms of the fibre and matrix properties and the fibre volume ratio. A boundary layer theory of
shell buckling is extended to the case of shear deformable laminated cylindrical shells under hygrothermal
environments, and a singular perturbation technique is employed to determine buckling loads and post-
buckling equilibrium paths. The numerical examples presented relate to the performance of perfect and
imperfect, moderately thick, cross-ply laminated cylindrical shells under different sets of environmental
conditions. The results presented herein show that the buckling load and postbuckling strength will degrade
and the imperfection sensitivity will become slightly weaker with increasing moisture concentrations and
temperatures under the combined loading case (2). In contrast, the imperfection sensitivity can only
be predicted by a very small imperfection, and when W* /¢ > 0.02 no elastic limit loads could be found
and the shell structure is virtually imperfection insensitive. These results can also provide insight into how
the shell parameters and loading conditions interact to affect the buckling load and the postbuckling re-
sponse.
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Appendix A
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Appendix B

In Egs. (25), (27) and (28)
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(Vars vars) = (4/36)[(Fy + 2Fg) — 4(Hy, + 2Hg) /38, Fyy — 4Hy, /3¢°] /Dy,
(V430> 7432) = (Dgg — 8Fs*6/3t2 + 16H6*6/9t4’D;2 - 8Fz*2/3t2 + 16H52/9t4)/DT1
(7511, 7522) = (By; — 4ET1/312»B§2 - 4E§2/3t2)/[DT1D;2A71A§2]1/4

* * * * * % 11/4
(Vo115 Vex2) = (4/3t2)(E117E22)/[D11D22A11A22] /
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Appendix C

In Egs. (40)-(42b)

1 1
0, = 1-= i
! C3V24( 2%“/5) 1

1 1 1
0> = — (72 = vs770)AT + (V2 — V5V1)ACle — o (1 - zal“/s)}u(lo)
Y24 V24
50 _ 1(3)3/4873/2 Yagm’ y2am®  gos + (1 + 1)go7 c
4 Ci(l+ g C(1+p) 806
1 gos (1 + w)gor — (2 + 1)gos | » 2 805 { 8os }
| s + 1) & 1 ‘
PG (1 + ) |58 T T g (1+p)° (140 namCr [ (T pm?
gos (1 + 1)go7 + gos 3
+ RV TSR 04 e
8os + V1aVos — 20c (0 + ) 2+u
1 m*n?f? 1 2480681 V241’ Bg
= —(3 3/4373/27{2 L )2+ )+ 22 (14 200) — #_ £ 2%
¢ = 1¢0) - 724(1 4+ 1) (2 + ) Y (1+2u) (LT 10205 — 2armieng
1 2 1+2 +8 1+
[zu g 1 g (LB S £ )
2 G 8o6
1 2 1 b 1 :
5(0) - . £ 75 - ( b(5/2) _ b(5/2)) 2], 11 1—= )»2
4 m al/z4 75 n /24 al/s Dy, Pbyy "~ e gt n(3)3/4 > a ays q
6@ — i(3)3/4 m*(1 + 2,u)£73/2 — 2gose 2 +%81/2
q 32 m?

1 _
o = o 4(3)3/ e 2037 — 75712)AT + (1347m1 — V5Vm2) AC]
2

1
C, =B+ zaym?, C; =1 —&
2 m?

(C.1)
and in Eqgs. (49)-(51b)
1 m*(1 + p) m’gy 2(ys — a)
O = — | el 5 e
3 G {%4/24 1672 ﬁ2g09g06 V14724 302 ﬁ2g09 Yo P €2
1 2(ys —a
Os = —[(rr2 = ¥5771)AT + (V2 — 757m1)AC] + M);O)
V24 V24
1 2 1 1
;L;o) Lo S L " gos + ( t#)gm .
277 (T + p)gos (1+p)ges 2l +pm

808 + ViaVos —

gos L+ pwgw —n+pwges | 1 s {1 4 8os ]
806 (1+u)’ (1+p)? vam* [ (1+m?
82}

gos gos + (1 + 1)go7 (

24
gos (14 p)’ 2

808 + ViaVos —
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1 m°(2 + ) m* g 1 o7 1 (2+p
W =yt e + 1+p) + gl +u) — 57—
N 32 14724 28008 V14V242g09g06 205 L1 1 206 =+ +ge(l+p 5 (1—|—u)g“
1 m’gi {gos 1 807 } ) Mg
m (1 + 2u)e + P Bl 151 LR R ITVETY v
4))24 “is( 2 /147)24 2800 | &os 1+ gos g2 Taos 2809806
201+ p)* = (1+2 m’n'f" S
(1+p (2 M gt 85 oy ey, B B
2(1+ p) 14 p gos 2 51
2= L MU S

e OV
D 128 14724 gé9g(3)6 S13

1+ ab 2 9s(ys—a
51(70> ( Y 2 [(724 — arys) — 7/5(/5 2 (0517(()21> - ¢b(1%))) 1/2] ot
24

i on 2na y24

bi (ax—7s)° (1 + aby)’e 1/2] 2
P

0P = ! [ 2(1 4 2p)e — 2gosé? +g05 :

1 [ by m'(1 +u) ) Si\?
§W — 2.2 32 B 3
P 128 327_[“?14/24 B 2ot 56 +m’n* gt (1+ ) S €

o) = 7 (4771 — V57r2) AT + (V34Vm1 — V5Vma) AC]

Si = gos(1 + ) — 4m*Cago

Sy = gool(4 + 9+ 4) + Co(1 + 21)] + 8m* (1 + 1) (2 + g0

Sy = gi36[Co(1 + 3+ %) + Cs(4 +2p) + (1 + )] + gos[Cs(6 + 8u + 21%) — 2u + 31> + 11°)]
Sy = gos(1 4 2p) + 8m* (1 4 w)g1o

Si3 = g136Co — gos(1 + 1)

2 2
m? m? + Sa,n*f m? + 9a,n*f
m? + an*p m? + a>n*p m? + an’p

in the above equations
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2 202 2 2. 2n2
Va1 Vazo + Yazant” ) — piyymonf

Vanot® + poppn® ) — Vsslnzﬁz(V231m2 )

o0 = (731 + 720" + 73207 B)(
( )

g2 = (731 + V320" + 73207° B) (a1 + 133377 B) — 33 (pagm’® + 72on” )
( )
=( )
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m* (yypm* + szz”zﬁz)gm + n2ﬁ2(7231m2 + V233”2/32)g03

&oo
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&oo
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800
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800
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4m?
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m? (yy0m* + “/2229’1252)8'131 + 9n2ﬁ2(Vz31m2 + 72339n2ﬁ2)g132
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215 = 7220(7310 + 7120) — 7320(V140 + V240)
816 = (V300 + V14?24“/§20)(V320?110 = V3107120) T V14724 (V3207140 = 71207220) (V320Y240 — V3107220)

b= {%4“/247’%20
816
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2 815
} ) C = V147247320 E
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(V310 + V14Y2472207240)P = V14V247220

817 =
(7310 + V1472472207240)B + V147247220
g0 = V320 (20‘24‘{17 —C) | V3107220 — V320240
V320 T V147247320 b? V320 + V147247320
_ 7320 (2¢°g17 +¢) 2 V320817
820 = — 2 2 + P
Y320 F V14Y24V220 b b 320 + V14724V220
23107320 — (73107220817 — V3207240) (V310 + 71472472207240)0 + 7147247220
(7320 + V14”/24V§20) (7310 =+ V1472472207240)D + V147247 220]
1 3/2 1 3/2 o
a((n) = “(()1/ '=1, a(lo) = “(10/ ' = agﬂ
2 5/2 2 5/2 o
b<()1> = b(()l/ )= V248195 b(10> = b(l()/ )= V24 53’20
1
bu = (@) ®’b + ajg2ade + (2 — 22¢? + ¢*) (C3)
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